THE EFFECT WHICH THE THICKNESS OF VACUUM-LAMINATED
INSULATION HAS ON ITS EFFECTIVE THERMAL CONDUCTIVITY
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We examine the heat-transfer mechanism in vacuum-laminated insulation and explain the re-
lationship between the effective coefficient of thermal conductivity and the thickness of the
insulation layer.

As demonstrated by experiments [1], the effective coefficient of thermal conductivity for vacuum-
laminated insulation is not only a function of temperature, but also a function of thickness. To explain this
phenomenon, let us initially examine the relationship between the effective coefficient of conductivity for an
insulation packet and the effective coefficient of thermal conductivity for its separate segments. Here we
will use the experimental data [1] for insulation that is arranged loosely and is made up of aluminum
screens, with a thickness of 14 um and SBR-M glass spacers with a thickness of 40 um, We will divide
the thickness of the insulation packet into n equal segments (6; = 6/n). :

Since the specific heat flow in the steady-state regime is identical at any point on the specimen, the
following equation is valid:
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Figure 1 shows the curves for the change in the effective coefficient Agffi of thermal conductivity in
the insulation segment, for specimens exhibiting thicknesses of 10, 21.5, and 40 mm; these curves have
been plotted according to (1), where q and AT; have been derived experimentally. The reduced specimen
thickness x/6 has been plotted along the axis of abscissas.

It follows from the graph that: a) Ageri varies sharply through the specimen thickness, and the maxi-
mum values are found in the middle zone; b) the absolute values of Aeffi increase in the various segments
with an increase in the specimen thicknesses; c) the absolute values for specimens of identical thickness
are greater for specimen boundary temperatures of 300-77°K,

As follows from (3) and Fig.1 Agfr as a function of insulation thickness is thus governed by the change
in Aepri in the segments,
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Fig.1. Change in the conductivity Aggfi of the insulation segment, uW /cm - deg for specimens of various
thicknesses: 1) 40 mm; 2) 21.5 mm; 3) 10 mm; a) specimen temperature 300-77°K; b) 300-20.4°K,

Fig. 2. Change in conductivity Aeffi, #W/cm -deg, in the insulation segments exhibiting identical temper-
atures at the boundaries, for specimens of various thicknesses: 1~3a and h) see Fig. 1.

It is most convenient to explain the nature of the function Agffi(x) by examining the change in Agfrj
in segments exhibiting identical temperatures at the boundaries of specimens of various thicknesses (Fig.
2). The plotting of Aeffi(Tj) was also accomplished on the basis of (1). As we can see from Fig, 2, in
segments with identical boundary temperatures the absolute values of Agffi increase with an increase in
the thickness of the specimen. Let us explain this phenomenon,

The transfer of heat between the screens [aluminum foil] is accomplished by radiation, and by con-
duction through the solid and the residual gases. Thus we can write

Aeffi=Nrad +As + hegr g i (4

Let us evaluate the effect of the components in the right~hand member of (4) and their contribution to the
conductivity with a change in insulation thickness. In the specimen segments exhibiting identical tempera-
ture at the boundaries we have Aragd =~ const, since the screens have been fabricated from one material and
their packing density is constant (28 screens/cm). This is also borne out by curves 3 (Fig. 4). Under
identical conditions, in first approximation, we can also assume that Ag =~ const (see curves 2 in Fig. 4).
Consequently, the function Aeffi(x) can be explained by a change in Aeffg i.

Let us evaluate the residual pressure in the layers of the insulation and the nature of its variation
with a change in specimen thickness (Fig.3). The curveshavebeen plotted according to the method des~
cribed in [2] for the case of 2 minimum pressure of 2+1079-5+10"° N/m? in the calorimeter bomb. Let
us examine the relationship between Aeffgi and the residual pressure between the screens. The flow of
heat between two adjacent screens, transmitted by the residual gases, can be written as

_ Dett gilTi = Tiel) 5
% 8/N ' )

On the other hand, assuming approximately that because of the substantial porosity of the glass spacer

(m > 0.9) the gas molecules pass through it freely, without collision against any of the fibers, and because
Kn = (L/d) = 1 (this condition is satisfied in our case), according to the kinetic theory of gases the trans-
fer of heat by the residual gases between the screen [3] can be determined from the equation

y ‘igi\(TiMTiH)
J 26C

where Agi is the coefficient of thermal conductivity for the residual gas at the temperature (Ti + Ti) /2:

P, (6)
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Fig. 3. Distribution of pressure P for residual gases in the insulation
layers, N/m?, for specimens of various thicknesses: 1-3,a, andb) see
Fig.1.

Fig.4. Overall conductivity Aj, yW/cm - deg, in the insulation seg-
ments with identical temperatures at the boundaries, and the compo~
nents of the conductivity for the solid, the radiation, and the residual
gases in the layers for specimens of the following thickness: ) 10 mm;
I 21.5 mm; 1) Aeffis 2) Ags 3) Arads 4) Aeffgi-

Equating Egs. (5) and (6), we find that

Agid p
2BCN
Turning to any specimen thickness and assuming in all cases that Tj = const, and assuming that the change
in Tj,, is insignificant (according to the experimental data), we can operate on the assumption that in (7)
the quantity Agj/28C = const. Thénheffgizleffg i(P), and consequently, Aoffi = Aoffi(p). At the same time,
we see from Fig, 3 that the absolute values of the pressure in the layers increase with an increase in speci-
men thickness, i.e., P = P(x). With this relationship, it follows from (7) that Aeffgi and, consequently,
the values of Agffi in (4) are functions of the thickness, The increase in the absolute values of the pres-
sure in the insulation layers (with an increase in specimen thickness) is explained by the increase in the
gas-release surface, whereas the evacuation conditions are impaired. Reference is made in [4] to the poor
conditions of evacuation from the insulation and to the resulting difference in pressures between the layers
and within the insulated space.

Aeffg i= (N

As we can see from Fig. 3, the greatest pressure values are found in the middle zones. Therefore,
according to (7), in these zones Aeffgi is at its greatest and, consequently, Aeffi is at its maximum (see
Figs.1 and 2). It should be expected that with an increase in specimen thickness for identical boundary
temperatures (provided that the conditions of a constant rate of evacuation from the calorimeter bomb is
maintained) a pressure will be established within the middle zone of the specimens that is close to the con-
stant pressure which is brought about by the dynamic equilibrium between the number of evacuated mole-
cules and those being released from the material. This assumption is confirmed by the curves of Fig. 3.
Since the effect of the extreme zones becomes insignificant in this case, Aeffi will tend toward some con-
stant quantity.

Let us evaluate the contribution to the overall transfer of heat in the insulation layers by radiation
and by conduction through the solid and through the residual gases; for this purpose we will use two speci-
mens, with thicknesses of 10 and 21.5 mm, at boundary temperatures of 300-20.4°K. The tentative data
for the components of Eq. (4) are given in Fig. 4.
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Radiative heat transfer (curves 3) was determined from the equation

head 1= L 2 ®
i A

where
Frad = €red i 0 (T? ~T§'+|),
The values of €{(T) are taken from [5].

The conduction through the solid was determined in the following manner. The transfer of heat be-
tween the cold wall of the calorimeter exhibiting a temperature of 20.4°K and the adjacent screen, at a
pressure of 2-10~° N/m? in the calorimeter bomb, is due exclusively to radiation and conduction through
the spacer. Thus

Tn - TZ (9)
Since the resulting values of Asq in our case are smaller by a factor of 10%-10° than the thermal conduc-
tivity of the glass when T = 100°K [6], recalculated with provision for the density of the glass paper and the
diameter of its elementary fibers, we canassume that Ag, is defined exclusively by contact conduction. In
the existing formulas for contact conduction in fiberglas materials (for example, Eq. (58) on p. 34 of [7]) the
authors assumed a model in which the area of the contact spots varies with a change in the applied load as
3/p, while the number of these contact points remains constant. Such a model is quite valid for great loads.
However, in our case, with the specific load ranging from 0.05 to 0.36 g/cm? (with consideration of speci~
men weight), there is an increase in the number of contacts with application of the load, and the change in
contact conduction, in first approximation, can be assume to be linearly dependent on the load [8]. Our
experimental data differ from the theoretical data obtained from formula (58) of [7] by factors of 200-400.

To determine the function Ag; we performed a number of experiments for three values of the specific
load on the specimen: p = 0 is the loose packing; p = 0.05 and 0.11 g/cm? From the resulting magnitudes of
of the heat flow and the temperature differences between the cold wall and the screen in contact with the
wall, using formula (9), we determined the contact conductivity which is expressed by the relation

As o = 0.36p. (10)
Figure 4 shows the curves for the change in contact conductivity through the thickness of the speci-

men (curves 2), plotted according to (10), where the specific load p was determined with consideration of
the initial compression of the specimen and with consideration of the weight of the insulation layer.

The conductivity through the gas (curves 4) was determined from the difference
7~eff g 1™ feff i (}Vrad i + }"-‘S i)'

Table 1 shows the mean integral values of the conductivities for radiation, and for conduction through
the solid and through the residual gas.

Analytically, let us express Agff as a function of the insulation thickness and the pressure of the
residual gas in the layers on the basis of the above-cited analysis of the heat-transfer mechanism. From
the theory of heat transfer for multilayer materials, in the case of A = A(T), the heat flow in a steady-state
regime is written as follows:

g Pettli—T) (11)

M)

where

7,

P»(T)dT-' (12)

1

Aeff=
17— 1y

It follows from a comparison of the experimental data (Figs.1-4 and Table 1) and their analysis that Aeff

is a weak function of temperature and is determined primarily by the residual pressure in the insulation
layers. This can be seen from comparison of the pressure and Agffi at the boundaries of the specimen
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TABLE 1. Contribution to the Overall Transfer of Heat by Radiation,
and Conduction through the Solid and through the Residual Gases in
the Insulation Layers
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and in the middle zone. The function A = A(T) can therefore be neglected and in first approximation we can
assume that A ~ Ay + A(P), where A, = const is the average value of the effective coefficient of thermal con~
ductivity for the given range of temperatures in the case in which there is no conduction through the gas,

As we can see from Figs. 2 and 3, the distribution of the residual-gas pressure in the insulation
layers, in first approximation, is independent of temperature, but it is a function of the coordinates, i.e.,
P = P(x). We can then write that

A= o - A (1): (13)

Therefore, for our case, the heat-conduction equation assumes the form
— [Ao + A ()] ? = g = const. (14
%

Let us integrate Eq. (14) ovér the entire insulation thickness 0

‘ dx
- = - 15
a qj Ao+ A () (19

As a result of the integration we have

q= 3 ————— (16)

8
Meff=—5— . (17

Let us transform Eq.(17). Since P = P(x), we can express X in the form of the function x = x(P). Let us
find the total differential of this expression, bearing in mind that the function A = AMT) can be neglected:

de— 9% gp_ 4P (18)
P P
ox

After substitution into (17), Agff finally assumes the form

B B (19)

ap
) % g+ (P
ox

Py

heff= 5;

Finally, we can draw the following conclusions: a) in vacuum~-laminated insulation we have the func-
tion Aggp(8), which is governed by the presence of the residual gas in the layers. With an increase in thick-
ness the absolute values of the pressures in the layers increase as a result of impairment of the evacua-
tion conditions; b) even in the case in which the pressure on the specimen is lower than 1. 1078 N/m?, the
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effective coefficient of thermal conductivity for vacuum-laminated insulation should be treated as a func-
tion of temperature and as a function of the residual pressure in the insulation layers; ¢) in vacuum-lam-
inated insulation based on aluminum foil and SBR-M glass paper, with the layers freely packed, the princi-
pal contributionto the heat transfer is made by the residual gases and by radiation (see Table 1}. In this
case, the transfer of heat through the solid amounts to no more than 5%.

= Cp/CV

NOTATION

is the effective coefficient of thermal conductivity;
is the specific heat flow;

is the specimen thickness;

is the instantaneous coordinate;

is the number of screens;

is the number of segments;

is the sequential number of each segment;

is the temperature;

is the temperature of the warm wall;

is the temperature of the cold wall;

is the Knudsen number;

is the mean free path of the gas molecules;

is the fiber diameter;

is the gas pressure;

is the accommodation factor;

is the ratio of isobaric and isochronic heat capacities;
is the specific load;

is the Stefan— Boltzmann constant.
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